Electronic conductivity of alkyne-capped ruthenium nanoparticles.

نویسندگان

  • Xiongwu Kang
  • Shaowei Chen
چکیده

Ruthenium nanoparticles (2.12 ± 0.72 nm in diameter) were stabilized by the self-assembly of alkyne molecules (from 1-hexyne to 1-hexadecyne) onto the Ru surface by virtue of the formation of Ru-vinylidene interfacial linkages. Infrared measurements depicted three vibrational bands at 2050 cm(-1), 1980 cm(-1) and 1950 cm(-1), which were ascribed to the vibrational stretches of the terminal triple bonds that were bound onto the nanoparticle surface. Thermogravimetric analysis showed that there were about 65 to 96 alkyne ligands per nanoparticle (depending on the ligand chainlength), corresponding to a molecular footprint of 20 to 15 Å(2). This suggests that the ligands likely adopted a head-on configuration on the nanoparticle surface, consistent with a vinylidene bonding linkage due to interfacial tautomeric rearrangements. With this conjugated interfacial bonding interaction, electronic conductivity measurements of the corresponding nanoparticle solid films showed that the nanoparticles all exhibited linear current-potential curves within the potential range of -0.8 V to +0.8 V at varied temperatures (200 to 300 K). The ohmic characters were partly ascribed to the spilling of core electrons into the organic capping layer that facilitated interparticle charge transfer. Furthermore, based on the temperature dependence of the nanoparticle electronic conductivity, the activation energy for interparticle charge transfer was estimated to be in the range of 70 to 90 meV and significantly, the coupling coefficient (β) was found to be 0.31 Å(-1) for nanoparticles stabilized by short-chain alkynes (1-hexyne, 1-octyne, and 1-decyne), and 1.44 Å(-1) for those with long alkynes such as 1-dodecyne, 1-tetradecyne, and 1-hexadecyne. This may be accounted for by the relative contributions of the conjugated metal-ligand interfacial bonding interactions versus the saturated aliphatic backbones of the alkyne ligands to the control of interparticle charge transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Platinum nanoparticles functionalized with acetylene derivatives: Electronic conductivity and electrocatalytic activity in oxygen reduction

Stable platinum nanoparticles were prepared by the self assembly of acetylene derivatives (1-alkynes, 4-ethylphenylacetylene, and 4-tert-butylphenylacetylene) onto bare Pt colloid surfaces. Transmission electron microscopic measurements showed that the nanoparticles exhibited an average core size of 2.85 ± 0.62 nm. FTIR study showed that with the acetylene ligands adsorbed onto the Pt nanoparti...

متن کامل

Solid-state electronic conductivity of ruthenium nanoparticles passivated by metal–carbon covalent bonds

Stable ruthenium nanoparticles were prepared by passivation of the metal cores (diameter 2.7–3.2 nm by transmission electron microscopy) with ruthenium–carbon covalent bonds. Electrochemical study showed that the electronic conductivity of the particle films exhibited metal-like temperature dependence, and it decayed exponentially with the length of the alkyl spacer of the aliphatic protecting ...

متن کامل

Electrocatalytic activities of alkyne-functionalized copper nanoparticles in oxygen reduction in alkaline media

Stable alkyne-capped copper nanoparticles were prepared by chemical reduction of copper acetate with sodium borohydride in the presence of alkyne ligands. Transmission electron microscopic measurements showed that nanoparticles were well dispersed with a diameter in the range of 4e6 nm. FTIR and photoluminescence spectroscopic measurements confirmed the successful attachment of the alkyne ligan...

متن کامل

Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices.

Lysine-capped gold nanoparticles can be electrostatically assembled on the surface of Bacillus cerius, a Gram-Positive bacterium. The conductivity of the “gold-plated” bacteria assembly immobilized between electrodes is a function of the humidity experienced by the nanoparticles.

متن کامل

Alkyne-functionalized ruthenium nanoparticles: ruthenium-vinylidene bonds at the metal-ligand interface.

Stable ruthenium nanoparticles were prepared by the self-assembly of 1-dodecyne onto the "bare" Ru colloid surface. The formation of a Ru-vinylidene (Ru═C═CH-R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives to form a heterocyclic complex at the metal-ligand interface, as manifested in (1)H and (13)C NMR, photoluminescence, and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 14  شماره 

صفحات  -

تاریخ انتشار 2012